1. Let $f(x)$ be a function on the set of reals defined by $f(x)=2+x-[x-2]$ where $[x]$ denotes the greatest integer less than or equal to x. Then the range of f is
A) $[0,2]$
B) $[2,3]$
C) $[2,4]$
D) $[4,5)$
2. The set of values of x for which $2 x^{2}-7 x+3$ is negative is
A) $[1 / 2,3]$
B) $(1 / 2,3)$
C) $(-3,-1 / 2)$
D) $[-3,-1 / 2]$
3. Which of the following is a countable set ?
A) $\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq 1, y=0\right\}$
B) $\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq 1,0 \leq y \leq 1\right\}$
C) $\left\{(x, y) \in \mathbb{R}^{2}: x, y\right.$ are rationals $\}$
D) $\left\{(x, y) \in \mathbb{R}^{2}: x, y\right.$ are irrationals $\}$
4. If the equation $x-\sqrt{3} y+2=0$ reduces to its normal form $x \cos \alpha+y \sin \alpha=p$ then which of the following is true ?
A) $\alpha=2 \pi / 3, p=2$
B) $\alpha=2 \pi / 3, p=1$
C) $\alpha=\pi / 6, p=1$
D) $\alpha=2 \pi / 3, p=-1$
5. The length of the y-intercept on the positive y-axis made by the circle for which $(-4,3)$ and $(12,-1)$ are extremities of a diameter is
A) $1+\sqrt{52}$
B) $\sqrt{52}-1$
C) $4+\sqrt{67}$
D) $4-\sqrt{67}$
6. The equation of the parabola with focus $(-1,-1)$ and directrix $2 y=3$ is
A) $4 x^{2}+8 x+20 y-1=0$
B) $3 y^{2}+2 x+8 y-7=0$
C) $4 x^{2}+2 x+4 y-1=0$
D) $4 y^{2}-8 x-14 y+7=0$
7. The distance between the planes $2 x+3 y-6 z+12=0$ and $4 x+6 y-12 z+3=0$
A) 9
B) 15
C) $3 / 2$
D) $9 / 7$
8. The angle between the line joining ($3,2,-2$) and $(4,1,-4)$ and the line joining $(4,-3,3)$ and $(6,-2,2)$ is
A) $\pi / 6$
B) $\pi / 4$
C) $\pi / 3$
D) $\pi / 2$
9. The value of $\lim _{x \rightarrow 1} \frac{x^{x}-1}{x \log x}$ is
A) 0
B) 1
C) 2
D) ∞
10. If $y=\sin \left(e^{-x} \log x\right)$ then $\frac{d y}{d x}=$
A) $\cos \left(e^{-x} \log x\right)$
B) $\cos \left(e^{-x} \log x\right)\left(\frac{1}{x}-e^{-x}\right)$
C) $\cos \left(-e^{-x}+\frac{1}{x}\right)$
D) $\cos \left(e^{-x} \log x\right)\left(\frac{1-x \log x}{x e^{x}}\right)$
11. $\int_{0}^{1} x(1-x)^{20} d x=$
A) $1 / 380$
B) $1 / 420$
C) $1 / 400$
D) $1 / 462$
12. The area between one arch of the curve $y=\cos 4 x$ and the x-axis is
A) $4 / 3$
B) $3 / 4$
C) $1 / 2$
D) $1 / 4$
13. A fair die is tossed twice. The probability that 3 turns up at least once is
A) $1 / 36$
B) $11 / 36$
C) $1 / 6$
D) $1 / 3$
14. Let $a_{n}=\sqrt{\frac{n^{2}+5 n+1}{n^{2}+3 n+1}}$. Then $\lim _{n \rightarrow \infty} a_{n}=$
A) 0
B) 1
C) 3
D) 5
15. $\lim _{x \rightarrow 0} x \sin (1 / x)=$
A) 0
B) 1
C) $1 / \pi$
D) π
16. Let $f_{n}(x)=\left\{\begin{array}{l}x^{n}: 0 \leq x \leq(1 / 2) \\ (1-x)^{n}:(1 / 2) \leq x \leq 1\end{array}\right.$ and let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for $x \in[0,1]$. Then which of the following is true?
A) $f(x)=0$ for all x
B) $f(0)=1$
C) $f(1 / 2)=1 / 2$
D) $f(1)=1$
17. Let $f(x, y)=\left\{\begin{array}{cl}\frac{x y-y}{x^{2}-y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{array}\right.$

Then $\lim _{(x, y) \rightarrow(1,1)} f(x, y)$ along $y=1$ is
A) 0
B) 1
C) $1 / 2$
D) $-1 / 2$
18. Let $f(x)=x^{2}$ and $\alpha(x)=x+1$. Then $\int_{0}^{1} f d \alpha=$
A) $1 / 3$
B) $1+(1 / 3)$
C) $2+(1 / 3)$
D) 3
19. Let $f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { otherwise }\end{cases}$

Let m denote the Lebesgue measure. Then $\int_{0}^{1} \mathrm{fdm}=$
A) 0
B) 1
C) 2
D) ∞
20. Let μ denote the outer measure on \mathbb{R} defined as follows
$\mu(E)=\left\{\begin{array}{l}0 \text { if } E \text { is countable } \\ 1 \text { otherwise }\end{array}\right.$
Then which of the following is a μ-measurable set ?
A) Closed interval $[0,1]$
B) Open interval $(0,1)$
C) The set of all positive reals
D) The set of all nonzero reals
21. The real part of $\left(\frac{1+i \sqrt{3}}{2}\right)^{3}$ is
A) 0
B) 1
C) -1
D) $1 / 2$
22. If (r, θ) is the polar representation of the complex number $\frac{1+i \sqrt{2}}{2}$ then $r=$
A) 1
B) $1 / 2$
C) $1 / 4$
D) $\sqrt{3} / 2$
23. Let $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}$ be the fifth roots of unity. Then $\left|e_{1}+e_{2}+e_{3}+e_{4}+e_{5}\right|=$
A) 0
B) 1
C) 4
D) 5
24. Which of the following is not an analytic function in the complex plane ? Here $z=x+i y$.
A) $f(z)=x y+2 i$
B) $f(z)=1+x+i y$
C) $f(z)=x+i(y+1)$
D) $f(z)=x^{2}-y^{2}+2 i x y$
25. Find $n(\gamma ; 0)$ where γ is the curve given by $\gamma(t)=e^{4 i t}: 0 \leq t \leq 1$.
A) 0
B) 1
C) 2
D) 3
26. Let γ be the circle $|z|=2$. Then $(1 / 2 \pi i) \int_{\gamma} \frac{\sin z}{z-(\pi / 2)}=$
A) 0
B) 1
C) $\pi / 2$
D) π
27. Which of the following is true about the function $f(z)=\sin (1 / z)$?
A) $\lim _{z \rightarrow 0} f(z)=0$
B) $|f(z)|>1$ for $|z|<1$
C) there exists z with $|z|<1$ such that $|f(z)|>2$
D) there exists real z with $|z|>1$ such that $|f(z)|>1$
28. Which of the following pairs of groups are isomorphic?
A) $\mathbb{Z}_{10} \oplus \mathbb{Z}_{10}$ and \mathbb{Z}_{100}
B) $\mathbb{Z}_{10} \oplus \mathbb{Z}_{5}$ and \mathbb{Z}_{50}
C) $\mathbb{Z}_{10} \oplus \mathbb{Z}_{6}$ and \mathbb{Z}_{60}
D) $\mathbb{Z}_{10} \oplus \mathbb{Z}_{7}$ and \mathbb{Z}_{70}
29. Let α be a permutation of the set $\{1,2,3,4,5,6,7,8\}$ defined by $\alpha(n)=9-n$. Then $\alpha=$
A) (87654321)
B) $(187)(365)(24)$
C) $(18)(27)(3456)$
D) $(18)(27)(36)(45)$
30. Let H be the subgroup of the symmetric group S_{4} generated by (12) (34). Then which of the following is a member of the coset $\mathrm{H}(123)$?
A) (132)
B) (134)
C) (124)
D) (1432)
31. The order of the commutator subgroup of the group $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ of quaternion units is
A) 1
B) 2
C) 4
D) 8
32. The number of mutually non isomorphic abelian groups of order 8 is
A) 1
B) 2
C) 3
D) 4
33. The number of homomorphisms from the additive group $(\mathbb{Q},+)$ of rationals to the additive group $(\mathbb{Z},+)$ of integers is
A) 1
B) 2
C) 4
D) infinite
34. Which of the following is a zero divisor in the ring \mathbb{Z}_{25} of integers mod 25 ?
A) 3
B) 9
C) 10
D) 12
35. Which of the following is not an irreducible polynomial in $\mathbb{Z}_{2}[x]$?
A) $x^{4}+x^{2}+1$
B) $x^{4}+x^{3}+1$
C) $x^{3}+x^{2}+1$
D) $x^{3}+x+1$
36. Let $\mathbb{R}[x]$ be the ring of polynomials over the reals and I be the ideal generated by $x^{2}+1$. Then $I+\left(x^{2}+x+1\right)=$
A) $I+x$
B) $I+x^{2}$
C) $I+(x+1)$
D) $I+\left(x^{2}+1\right)$
37. Let $\phi: \mathbb{Z}[x] \rightarrow \mathbb{R}$ be the ring homomorphism given by $f(x) \mapsto f(1+\sqrt{2})$. Then $\operatorname{ker} \phi=$
A) $\left\langle x^{2}-2 x-1\right\rangle$
B) $\left\langle x^{2}-2\right\rangle$
C) $\left\langle x^{2}-x-2\right\rangle$
D) $\left\langle x^{2}-2 x-2\right\rangle$
38. The order of the group of units in the ring \mathbb{Z}_{25} of integers $\bmod 25$ is
A) 24
B) 20
C) 16
D) 12
39. Let $\alpha=\sqrt{2}$ and $\beta=\sqrt[3]{2}$. Then the degree $[\mathbb{Q}(\alpha, \beta): \mathbb{Q}]=$
A) 3
B) 4
C) 5
D) 6
40. Let K be a field of order 3^{8} and F be a subfield of K. Then which of the following is a possible order of F ?
A) 3^{3}
B) 3^{4}
C) 3^{5}
D) 3^{6}

41. The number of automorphisms of the field $Q(\sqrt[3]{2})$ is
A) 1
B) 2
C) 3
D) 6
42. Let A be a 3×3 matrix which is nilpotent. Then which of the following is not true of A.
A) The rank of A is less than 3
B) A is invertible
C) 0 is an eigen value of A
D) $\operatorname{det} A=0$
43. Let $A=\left(a_{i j}\right)$ be a 10×10 matrix where $a_{i j}=\left\{\begin{array}{l}1 \text { if } i<j \\ 0 \text { otherwise }\end{array}\right.$. Then $\operatorname{det} A=$
A) 0
B) 1
C) -1
D) 10
44. The rank of the matrix $\left[\begin{array}{lllll}1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ is
A) 1
B) 2
C) 3
D) 4
45. Consider the system of equations
$2 x+3 y+4 z=1$
$3 x+2 y+z=2$
$x+y+z=3$
Then which of the following is true?
A) The system has a unique solution
B) The system has exactly two solutions
C) The system has infinitely many solutions
D) The system has no solution
46. Let W be the subspace of \mathbb{R}^{3} spanned by $(1,2,1)$ and $(0,1,1)$. Then which of the following is in W ?
A) $(1,2,3)$
B) $(2,3,4)$
C) $(2,3,1)$
D) $(1,1,1)$
47. If $\{(1,1,1),(1,2,1),(x, 1,0)\}$ is a linearly dependent set in \mathbb{R}^{3} then $x=$
A) 0
B) 1
C) 2
D) 3
48. Let W be the subspace of \mathbb{R}^{2} spanned by $(1,2)$. Then which of the following lines represents W ?
A) $x+2 y=0$
B) $2 x+y=0$
C) $x-2 y=0$
D) $y-2 x=0$
49. Which of the following is not a linear transformation from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$?
A) $f(x, y)=(2 x+y, 0)$
B) $f(x, y)=(x, x+y)$
C) $f(x, y)=(x+1, y+1)$
D) $f(x, y)=(x, x)$
50. Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be defined by $f(x, y, z, t)=(x-y, x-z, x-t, 0)$.

Then dimension of null space of f is
A) 0
B) 1
C) 2
D) 3
51. Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear operator which is represented by the matrix $\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$. Then which of the following is also a matrix representing T ?
A) $\left[\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right]$
B) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
C) $\left[\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right]$
D) $\left[\begin{array}{ll}3 & 2 \\ 2 & 1\end{array}\right]$
52. Which of the following is a linear functional on \mathbb{R}^{3} which annihilates the subspace $\{(x, y, z): z=0\}$?
A) $f(x, y, z)=x-y+z$
B) $f(x, y, z)=x-z$
C) $f(x, y, z)=y-z$
D) $f(x, y, z)=z$
53. Which of the following is an eigen value of the matrix $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 6\end{array}\right]$?
A) 0
B) 1
C) 2
D) 3
54. Which of the following is a non diagonalizable matrix?
A) $\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
B) $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 3\end{array}\right]$
C) $\left[\begin{array}{lll}2 & 3 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 3\end{array}\right]$
D) $\left[\begin{array}{lll}2 & 0 & 0 \\ 2 & 3 & 0 \\ 3 & 2 & 1\end{array}\right]$
55. Let (a, b) denote the GCD of two numbers a and b. Then which of the following is not true? Here a, b, c are positive integers.
A) $((a, b), c)=(a,(b, c))$
B) $(a c, b c)=(a, b) c$
C) If $(a, b)=(a, c)=1$ then $(a, b c)=1$
D) If $(a, b)=1$ then $(a+b, a-b)=1$
56. Let ϕ denote the Euler totient function. Then $\phi(187)=$
A) 160
B) 186
C) 28
D) 26
57. If $x=a+b$ satisfies the congruence relation $4 x \equiv 3(\bmod 15)$ then which of the following is true ?
A) If $a=4$ then b is a multiple of 12
B) If $a=4$ then b is a multiple of 15
C) If $a=12$ then b is a multiple of 15
D) If $a=10$ then b is a multiple of 15
58. If a and b are two solutions of the system
$x \equiv 3(\bmod 5)$
$x \equiv 5(\bmod 7)$
$x \equiv 7(\bmod 11)$
then which of the following is necessarily true?
A) $a \equiv b(\bmod 105)$
B) $a \equiv-b(\bmod 105)$
C) $\mathrm{a} \equiv \mathrm{b}(\bmod 385)$
D) $a \cong-b(\bmod 385)$
59. The differential equation which represents the family of curves $y^{2}=-x^{2}+c x$ is
A) $2 y^{\prime} x=x^{2}-y^{2}$
B) $2 y y^{\prime} x=y^{2}-x^{2}$
C) $2 y y^{\prime} x=x^{2}+y^{2}$
D) $2 y y^{\prime} x=-\left(x^{2}+y^{2}\right)$
60. The Wronskian of the two functions $y_{1}=e^{-x}$ and $y_{2}=x e^{-x}$ is
A) e^{-x}
B) $e^{-2 x}$
C) $2 e^{-x}$
D) $x e^{-2 x}$
61. Let $f(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots$. and $f^{\prime}(x)$ be the power series obtained by term differentiation of the power series of $f(x)$. Then the radius of convergence of $f^{\prime}(x)$ is
A) 0
B) 1
C) $1 / 2$
D) ∞

A21

62. $\int \frac{J_{4}(x)}{x^{3}} d x$ where $J_{p}(x)$ is the Bessel function of order p is
A) $-\frac{J_{4}(x)}{x^{4}}+c$
B) $-\frac{J_{3}(x)}{x^{4}}+c$
C) $-\frac{J_{3}(x)}{x^{3}}+c$
D) $-\frac{J_{4}(x)}{x^{3}}+c$
63. The solution of the partial differential equation $\frac{\partial^{2} z}{\partial y^{2}}=0$ where z is a function of x and y is of the form
A) $z=f(x)+y g(x)$
B) $z=f(y)+x g(y)$
C) $z=f(x)+g(x)$
D) $z=f(y)+g(y)$
64. The solution of the differential equation $x d y-y d x-2 x^{2} z d z=0$ is
A) $x=y\left(z^{2}+c\right)$
B) $y=x\left(z^{2}+c\right)$
C) $x=y z^{2}+c$
D) $y=x z^{2}+c$
65. Which of the following is a hyperbolic equation for all values of x ?
A) $u_{x x}+\sin ^{2}(x) u_{y y}+u_{y}=0$
B) $u_{x}+(2 N / x) u_{y}=-\left(1 / a^{2}\right) u_{y y}$ where N and a are constants
C) $u_{x x}-x u_{y y}=0$
D) $(n-1)\left(u_{x x}-y^{2 n} u_{y y}\right)=n y^{2 n-1} u_{y}$ where $n \in \mathbb{N}$ and $n \neq 1$
66. If $u(x, t)$ satisfies the one dimensional wave equation $\frac{\partial^{2} u}{\partial x^{2}}=(1 / 9) \frac{\partial^{2} u}{\partial t^{2}}$ where $-\infty<x<\infty ; t>0$ and the initial conditions $u(x, 0)=2 x-3, u_{t}(x, 0)=0$ then $u(3,2)=$
A) -4
B) 4
C) -3
D) 3
67. If $u(x, t)$ satisfies the equation $u_{x x}+u_{y y}=0$ in the rectangle $1 \leq x \leq 3,2 \leq y \leq 4$ anc the boundary conditions $u(x, 2)=0, u(x, 4)=0, u(1, y)=0, u(y, 3)=4 y-3$ theı the minimum value of $u(x, y)$ in the rectangle is
A) 0
B) 2
C) -3
D) 5

A21

68. Which of the following property of metric is not satisfied by the function
$d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $d(x, y)=\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}$ where $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$?
A) $d(x, y) \geq 0$ for all $x, y \in \mathbb{R}^{2}$
B) $d(x, y)=d(y, x)$ for all $x, y \in \mathbb{R}^{2}$
C) $d(x, y)=0$ implies $x=y$
D) $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in \mathbb{R}^{2}$
69. Let d be the discrete metric on \mathbb{R}. Which of the following sequence $\left(x_{n}\right)$ is convergent in this space?
A) $x_{n}=1+\frac{1}{n}$
B) $x_{n}= \begin{cases}1 & \text { if } n \leq 10 \\ 2 & \text { otherwise }\end{cases}$
C) $x_{n}=\left\{\begin{array}{cc}0 & \text { if } n<10 \\ 1 / n & \text { otherwise }\end{array}\right.$
D) $x_{n}=\frac{1}{n}+\frac{1}{n+1}$
70. Let ρ be the sup metric on the space $\mathrm{C}[0,1]$ of continuous real valued functions on $[0,1]$. Let $f(x)=\left\{\begin{array}{l}x: 0 \leq x \leq 1 / 2 \\ 1-x: 1 / 2 \leq x \leq 1\end{array}\right.$ and $g(x)=\left\{\begin{array}{l}0: 0 \leq x \leq 1 / 2 \\ 1-2 x: 1 / 2 \leq x \leq 1\end{array}\right.$.

Then $\rho(\mathrm{f}, \mathrm{g})=$
A) 0
B) 1
C) $1 / 2$
D) $3 / 2$
71. Let τ be the topology on the reals \mathbb{R} for which $\{(-\infty, a): a>0\} \cup\{(b, \infty): b>0\}$ is a subbase. Which of the following is not an open set in this topology?
A) $(0,1)$
B) $(-1,0)$
C) $(1,2)$
D) $(-\infty, 1)$
72. Let τ_{1} be the cofinite topology on \mathbb{R} and τ_{2} be the usual topology on \mathbb{R}. Then which of the following is a continuous function from $\left(\mathbb{R}, \tau_{1}\right)$ to $\left(\mathbb{R}, \tau_{2}\right)$?
A) $f(x)=1$
B) $f(x)=x$
C) $f(x)= \begin{cases}x & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}$
D) $f(x)=\left\{\begin{array}{cl}1+x & \text { if } x \geq 1 \\ 2 & \text { otherwise }\end{array}\right.$
73. Which of the following pairs of spaces are homeomorphic? Here \mathbb{R} is the real line.
A) \mathbb{R} and $\mathbb{R} \times \mathbb{R}$
B) \mathbb{R} and the open interval $(0,1)$
C) the closed interval $[0,1]$ and the unit circle $\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x^{2}+y^{2}=1\right\}$
D) the closed interval $[0,1]$ and the unit disk $\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x^{2}+y^{2} \leq 1\right\}$
74. Let $X_{p}=\mathbb{R}^{2}$ be the normed linear space with norm $\left\|\|_{p}: 1 \leq p \leq \infty\right.$. Then for which value of p the point $(3 / 4,-1 / 2)$ lies in the closed unit ball in X_{p} ?
A) 1 and 2
B) 2 and ∞
C) 1 and ∞
D) ∞ only
75. Let X be the normed linear space c_{00} with norm $\left\|\|_{\infty}\right.$ and T be a linear operator on X which is continuous at the point $(0,0, \ldots)$. Then which of the following is not true?
A) T is continuous on X
B) T is bounded
C) $T(B)$ is bounded where B is the closed unit ball in X
D) For some convergent sequence $\left(x_{n}\right)$ in X the sequence $\left(T\left(x_{n}\right)\right.$) is not convergent
76. Let $X=\mathbb{R}^{2}$ be the normed linear space with norm $\left\|\|_{2}\right.$. Let A be a bounded linear operator on X given by $A(x, y)=\left(\frac{1}{\sqrt{2}}(x+y), \frac{1}{\sqrt{2}}(y-x)\right)$. Then $\|A\|=$
A) 1
B) 2
C) $\sqrt{2}$
D) $2 \sqrt{2}$
77. Let $X=\mathbb{R}^{3}$ be the normed linear space with norm $\left\|\|_{2}\right.$ and $Y=\mathbb{R}^{2}$ be the normed linear space with norm $\left\|\|_{2}\right.$. If $F: X \rightarrow Y$ is defined by $F\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{3}\right)$ then which of the following is not true?
A) F is continuous
B) F maps open sets onto open sets
C) If $\|x\|=1$ then $\|F(x)\|=1$
D) F has closed graph
78. Let $X=C[-1,1]$ be the space of all real valued continuous functions on $[-1,1]$ with inner product defined by $\langle x, y\rangle=\int_{-1}^{1} x(t) y(t) d t$. If $x(t)=\sin t$ then the set of all elements in X orthogonal to x is
A) the set of all odd functions
B) the set of all even functions
C) the set $\{\cos n t: n \in \mathbb{N}\}$
D) the set $\{$ sinnt: $n \in \mathbb{N}\}$
79. Let $H=l^{2}$ be the real Hilbert space and $f \in H^{\prime}$ be defined by $f(x)=x(1)+\frac{x(2)}{2}+\frac{x(3)}{3}+\ldots$. Then $\|f\|=$
A) $\pi / \sqrt{6}$
B) $\pi / 6$
C) $\pi^{2} / 6$
D) $\pi^{2} / \sqrt{6}$
80. Let $H=L^{2}[-\pi, \pi]$ be the complex Hilbert space and $u_{n}(t)=e^{i n t} / \sqrt{2 \pi}$ for each integer n and $t \in[-\pi, \pi]$. Then which of the following is not true?
A) $x=\sum_{n}\left(x, u_{n}\right\rangle u_{n}$ for all $x \in H$
B) $\|x\|=\left(\Sigma_{n} \mid\left\langle\left.\left(x, u_{n}\right\rangle\right|^{2}\right)^{1 / 2}\right.$ for all $x \in H$
C) $\overline{\operatorname{span}\left\{u_{n}\right\}}=H$
D) $\left\{u_{n}:\left\langle x, u_{n}\right\rangle \neq 0\right\}$ is finite for each $x \in H$

