17821

- 1. Let f(x) be a function on the set of reals defined by f(x) = 2 + x [x 2] where [x] denotes the greatest integer less than or equal to x. Then the range of f is
 - A) [0, 2] B) [2, 3] C) [2, 4] D) [4, 5)
- 2. The set of values of x for which $2x^2 7x + 3$ is negative is
 - A) [1/2, 3] B) (1/2, 3)
 - C) (-3, -1/2) D) [-3, -1/2]
- 3. Which of the following is a countable set?
 - A) $\{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, y = 0\}$
 - B) $\{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le 1\}$
 - C) {(x, y) $\in \mathbb{R}^2$: x, y are rationals}
 - D) {(x, y) $\in \mathbb{R}^2$: x, y are irrationals}
- 4. If the equation $x \sqrt{3}y + 2 = 0$ reduces to its normal form $x \cos \alpha + y \sin \alpha = p$ then which of the following is true ?
 - A) $\alpha = 2\pi/3, p = 2$ B) $\alpha = 2\pi/3, p = 1$
 - C) $\alpha = \pi/6, p = 1$ D) $\alpha = 2\pi/3, p = -1$
- 5. The length of the y intercept on the positive y-axis made by the circle for which (-4, 3) and (12, -1) are extremities of a diameter is
 - A) $1 + \sqrt{52}$ B) $\sqrt{52} 1$
 - C) $4 + \sqrt{67}$ D) $4 \sqrt{67}$

6. The equation of the parabola with focus (-1, -1) and directrix 2y = 3 is

A) $4x^2 + 8x + 20y - 1 = 0$	B) $3y^2 + 2x + 8y - 7 = 0$
C) $4x^2 + 2x + 4y - 1 = 0$	D) $4y^2 - 8x - 14y + 7 = 0$

7. The distance between the planes 2x + 3y - 6z + 12 = 0 and 4x + 6y - 12z + 3 = 0
A) 9
B) 15
C) 3/2
D) 9/7

8. The angle between the line joining (3, 2, -2) and (4, 1, -4) and the line joining (4, -3, 3) and (6, -2, 2) is

- A) π/6 B) π/4
- C) $\pi/3$ D) $\pi/2$

-1-

9. The value of $\lim_{x \to 1} \frac{x^x - 1}{x \log x}$ is A) 0 B) 1 C) 2 D) ∞ 10. If y = sin(e^{-x} log x) then $\frac{dy}{dx}$ = B) $\cos(e^{-x} \log x) \left(\frac{1}{x} - e^{-x}\right)$ A) $\cos(e^{-x} \log x)$ C) $\cos\left(-e^{-x}+\frac{1}{x}\right)$ D) $\cos(e^{-x} \log x) \left(\frac{1 - x \log x}{x e^{x}}\right)$ 11. $\int_{0}^{1} x(1-x)^{20} dx =$ A) 1/380 B) 1/420 C) 1/400 D) 1/462 12. The area between one arch of the curve $y = \cos 4x$ and the x - axis is A) 4/3 B) 3/4 C) 1/2 D) 1/4 13. A fair die is tossed twice. The probability that 3 turns up at least once is A) 1/36 B) 11/36 C) 1/6 D) 1/3 14. Let $a_n = \sqrt{\frac{n^2 + 5n + 1}{n^2 + 3n + 1}}$. Then $\lim_{n \to \infty} a_n =$ A) 0 B) 1 C) 3 D) 5 15. $\lim_{x \to 0} x \sin(1/x) =$ A) 0 B) 1 C) $1/\pi$ D) π 16. Let $f_n(x) = \begin{cases} x^n : 0 \le x \le (1/2) \\ (1-x)^n : (1/2) \le x \le 1 \end{cases}$ and let $f(x) = \lim_{n \to \infty} f_n(x)$ for $x \in [0, 1]$. Then which of the following is true? A) f(x) = 0 for all x B) f(0) = 1C) f(1/2) = 1/2D) f(1) = 1

A21

17821

17821 17. Let $f(x, y) = \begin{cases} \frac{xy - y}{x^2 - y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{otherwise} \end{cases}$ Then $\lim_{(x, y) \to (1, 1)} f(x, y)$ along y = 1 is A) 0 B) 1 C) 1/2 D) -1/2 18. Let $f(x) = x^2$ and $\alpha(x) = x + 1$. Then $\int_{\alpha}^{1} f d\alpha =$ A) 1/3 B) 1 + (1/3)D) 3 C) 2 + (1/3)19. Let $f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{otherwise} \end{cases}$ Let m denote the Lebesgue measure. Then $\int f dm =$ A) 0 B) 1 C) 2 D) ∞ 20. Let μ denote the outer measure on \mathbb{R} defined as follows $\mu(E) = \begin{cases} 0 & \text{if } E \text{ is countable} \\ 1 & \text{otherwise} \end{cases}$ Then which of the following is a μ – measurable set? A) Closed interval [0, 1] B) Open interval (0, 1) C) The set of all positive reals D) The set of all nonzero reals 21. The real part of $\left(\frac{1+i\sqrt{3}}{2}\right)^3$ is A) 0 B) 1 C) -1 D) 1/2 22. If (r, θ) is the polar representation of the complex number $\frac{1+i\sqrt{2}}{2}$ then r = D) $\sqrt{3}/2$ C) 1/4 A) 1 B) 1/2 A21 -3-

A MARINE MANY CARACTERISTICS CONTRACTOR AND A				
23.	Let e_1, e_2, e_3, e_4, e_5 be	e the fifth roots of un	ity. Then $ e_1 + e_2 + e_3 $	$ e_3 + e_4 + e_5 =$
	A) 0	B) 1	C) 4	D) 5
24.	Which of the following Here $z = x + iy$.	g is not an analytic fu	nction in the comple	ex plane ?
	A) $f(z) = xy + 2i$		B) $f(z) = 1 + x + iy$	
	C) $f(z) = x + i(y + 1)$		D) $f(z) = x^2 - y^2 + y^2$	2ixy
25.	Find n(γ ; 0) where γ	is the curve given b	by $\gamma(t) = e^{4\pi i t}$: $0 \le t$:	≤1.
	A) 0	B) 1	C) 2	D) 3
26. Let γ be the circle $ z = 2$. Then $(1/2\pi i) \int_{\gamma} \frac{\sin z}{z - (\pi/2)} =$				
	A) 0	B) 1	C) π/2	D) π
27.	Which of the following	g is true about the fu	nction $f(z) = sin(1/z)$?
	A) $\lim_{z\to 0} f(z) = 0$			
	B) $ f(z) > 1$ for $ z < 1$			
	C) there exists z with $ z < 1$ such that $ f(z) > 2$			
	D) there exists real z	with $ z > 1$ such the	at f(z) > 1	
28.	Which of the following	g pairs of groups are	isomorphic?	
	A) $\mathbb{Z}_{10} \oplus \mathbb{Z}_{10}$ and \mathbb{Z}_{100}		B) $\mathbb{Z}_{10} \oplus \mathbb{Z}_{5}$ and \mathbb{Z}_{5}	0
	C) $\mathbb{Z}_{10} \oplus \mathbb{Z}_6$ and \mathbb{Z}_{60}		D) $\mathbb{Z}_{10} \oplus \mathbb{Z}_7$ and \mathbb{Z}_7	70
29.	Let α be a permutati α (n) = 9 – n. Then α	=	, 4, 5, 6, 7, 8} define	d by
	A) (87654321)		B) (1 8 7) (3 6 5) (2 4)
	C) (1 8) (2 7) (3 4 5 6	5)	D) (18) (27) (36)	(4 5)
30.	Let H be the subgrou Then which of the fol			

A) (1 3 2) B) (1 3 4) C) (1 2 4) D) (1 4 3 2) A21 -4-

1782	1			
	The order of the com quaternion units is	imutator subgroup c	of the group $Q_8 = \{\pm$	
	A) 1	B) 2	C) 4	D) 8
32.	The number of mutua	Illy non isomorphic a B) 2	belian groups of orc C) 3	ler 8 is D)4
33.	The number of homo the additive group (Z	morphisms from the	,	,
	A) 1	B) 2	C) 4	D) infinite
34.	Which of the followin A) 3	g is a zero divisor in B) 9	the ring \mathbb{Z}_{25} of integer C) 10	ers mod 25 ? D) 12
35.	Which of the followin A) $x^4 + x^2 + 1$ C) $x^3 + x^2 + 1$	g is not an irreducibl	e polynomial in $\mathbb{Z}_{2}[x B) x^{4} + x^{3} + 1$ D) x ³ + x + 1]?
36.	Let $\mathbb{R}[x]$ be the ring of $x^2 + 1$. Then I + ($x^2 + 1$)	x + 1) =		
	A) I + x	B) I + x ²	C) I + (x + 1)	D) I + (x ² + 1)
37.	Let $\phi : \mathbb{Z}[x] \to \mathbb{R}$ be Then ker $\phi =$	the ring homomorph	hism given by f(x) \vdash	$rightarrow f(1 + \sqrt{2}).$
	A) $\langle x^2 - 2x - 1 \rangle$		B) $\langle x^2 - 2 \rangle$	
	C) $\langle x^2 - x - 2 \rangle$		D) $\langle x^2 - 2x - 2 \rangle$	
38.	The order of the grou	p of units in the ring	\mathbb{Z}_{25} of integers mod	25 is
	A) 24	B) 20	C) 16	D) 12
39 .	Let $\alpha = \sqrt{2}$ and $\beta = \frac{1}{2}$	$\sqrt[3]{2}$. Then the degree	$e [Q(\alpha, \beta) : Q] =$	
	A) 3	B) 4	C) 5	D) 6
40.	Let K be a field of ord is a possible order of		field of K. Then whic	ch of the following
	A) 3 ³	B) 3⁴	C) 3⁵	D) 3 ⁶

A21

-5-

•

		- · · ·	
			17821
41. The number of autor	norphisms of the fiel	dQ(∛2) is	
A) 1	B) 2	C) 3	D) 6
42. Let A be a 3 × 3 matriA) The rank of A is leC) 0 is an eigen valu	ess than 3	Then which of the fo B) A is invertible D) det A = 0	ollowing is not true of A.
43. Let A = (a _{ij}) be a 10 >	< 10 matrix where a;	$\mathbf{j} = \begin{cases} 1 \text{ if } \mathbf{i} < \mathbf{j} \\ 0 \text{ otherwise} \end{cases} . T$	Then det A =
A) 0	B) 1	C) –1	D) 10
44. The rank of the matr			,
A) 1	B) 2	C) 3	D) 4
 45. Consider the system of equations 2x + 3y + 4z = 1 3x + 2y + z = 2 x + y + z = 3 Then which of the following is true ? A) The system has a unique solution B) The system has exactly two solutions C) The system has infinitely many solutions D) The system has no solution 			
46. Let W be the subspatcher following is in WA) (1, 2, 3)C) (2, 3, 1)		y (1, 2, 1) and (0, 1, B) (2, 3, 4) D) (1, 1, 1)	, 1). Then which of
47. If {(1, 1, 1), (1, 2, 1),	(x, 1, 0)} is a linear	y dependent set in	\mathbb{R}^3 then x =
A) 0	B) 1	C) 2	D) 3
A21	-6		

hatts

D) 3

17821

48. Let W be the subspace of \mathbb{R}^2 spanned by (1, 2). Then which of the following lines represents W ?

A) $x + 2y = 0$	B) $2x + y = 0$
C) $x - 2y = 0$	D) $y - 2x = 0$

49. Which of the following is not a linear transformation from $\mathbb{R}^2 \to \mathbb{R}^2$?

- A) f(x, y) = (2x + y, 0)C) f(x, y) = (x + 1, y + 1)B) f(x, y) = (x, x + y)D) f(x, y) = (x, x)
- 50. Let $f : \mathbb{R}^4 \to \mathbb{R}^4$ be defined by f(x, y, z, t) = (x y, x z, x t, 0). Then dimension of null space of f is
 - A) 0 B) 1 C) 2 D) 3

51. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator which is represented by the matrix $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$.

Then which of the following is also a matrix representing T?

A) $\begin{bmatrix} 2 & 0 \\ 3 & 1 \end{bmatrix}$ B) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ C) $\begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix}$ D) $\begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$

52. Which of the following is a linear functional on \mathbb{R}^3 which annihilates the subspace $\{(x, y, z) : z = 0\}$?

- A) f(x, y, z) = x y + zB) f(x, y, z) = x zC) f(x, y, z) = y zD) f(x, y, z) = z
- 53. Which of the following is an eigen value of the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 6 \end{bmatrix}$?

A) 0 B) 1 C) 2

54. Which of the following is a non diagonalizable matrix ?

A)
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 B) $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$ C) $\begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix}$ D) $\begin{bmatrix} 2 & 0 & 0 \\ 2 & 3 & 0 \\ 3 & 2 & 1 \end{bmatrix}$
A21

17821 55. Let (a, b) denote the GCD of two numbers a and b. Then which of the following is not true ? Here a, b, c are positive integers. A) ((a, b), c) = (a, (b, c))B) (ac, bc) = (a, b) cD) If (a, b) = 1 then (a + b, a - b) = 1C) If (a, b) = (a, c) = 1 then (a, bc) = 156. Let ϕ denote the Euler totient function. Then $\phi(187) =$ A) 160 B) 186 C) 28 D) 26 57. If x = a + b satisfies the congruence relation $4x \equiv 3 \pmod{15}$ then which of the following is true? A) If a = 4 then b is a multiple of 12 B) If a = 4 then b is a multiple of 15 C) If a = 12 then b is a multiple of 15 D) If a = 10 then b is a multiple of 15 58. If a and b are two solutions of the system $x \equiv 3 \pmod{5}$ $x \equiv 5 \pmod{7}$ $x \equiv 7 \pmod{11}$ then which of the following is necessarily true? A) $a \equiv b \pmod{105}$ B) $a \equiv -b \pmod{105}$ C) $a \equiv b \pmod{385}$ D) $a \equiv -b \pmod{385}$ 59. The differential equation which represents the family of curves $y^2 = -x^2 + cx$ is A) $2yy'x = x^2 - y^2$ B) $2vv'x = v^2 - x^2$ C) $2yy'x = x^2 + y^2$ D) $2yy'x = -(x^2 + y^2)$ 60. The Wronskian of the two functions $y_1 = e^{-x}$ and $y_2 = xe^{-x}$ is A) e-* B) e^{-2x} C) 2e-* D) xe^{-2x} 61. Let $f(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$ and f'(x) be the power series obtained by term differentiation of the power series of f(x). Then the radius of convergence of f'(x) is A) 0 B) 1 C) 1/2 D) ∞ A21 -8-

hatts

62. $\int \frac{J_4(x)}{x^3} dx$ where $J_p(x)$ is the Bessel function of order p is

A)
$$-\frac{J_4(x)}{x^4} + c$$

B) $-\frac{J_3(x)}{x^4} + c$
C) $-\frac{J_3(x)}{x^3} + c$
D) $-\frac{J_4(x)}{x^3} + c$

63. The solution of the partial differential equation $\frac{\partial^2 z}{\partial y^2} = 0$ where z is a function of x and y is of the form

A) z = f(x) + yg(x)B) z = f(y) + xg(y)C) z = f(x) + g(x)D) z = f(y) + g(y)

64. The solution of the differential equation $x dy - y dx - 2x^2z dz = 0$ is

A)
$$x = y (z^2 + c)$$

B) $y = x (z^2 + c)$
C) $x = yz^2 + c$

D)
$$y = yz + c$$

65. Which of the following is a hyperbolic equation for all values of x?

A) $u_{xx} + \sin^2(x)u_{yy} + u_y = 0$ B) $u_x + (2N/x)u_y = -(1/a^2)u_{yy}$ where N and a are constants C) $u_{xx} - xu_{yy} = 0$ D) $(n - 1) (u_{xx} - y^{2n}u_{yy}) = ny^{2n-1}u_y$ where $n \in \mathbb{N}$ and $n \neq 1$

66. If u(x, t) satisfies the one dimensional wave equation $\frac{\partial^2 u}{\partial x^2} = (1/9) \frac{\partial^2 u}{\partial t^2}$ where $-\infty < x < \infty$; t > 0 and the initial conditions u(x, 0) = 2x - 3, $u_t(x, 0) = 0$ then u(3, 2) =A) -4 B) 4 C) -3 D) 3

- 67. If u(x, t) satisfies the equation $u_{xx} + u_{yy} = 0$ in the rectangle $1 \le x \le 3, 2 \le y \le 4$ and the boundary conditions u(x, 2) = 0, u(x, 4) = 0, u(1, y) = 0, u(y, 3) = 4y 3 then the minimum value of u(x, y) in the rectangle is
- A) 0 B) 2 C) 3 D) 5 A21 -9-

hatts

- 68. Which of the following property of metric is not satisfied by the function d: $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ defined by d(x, y) = $(x_1 - y_1)^2 + (x_2 - y_2)^2$ where $x = (x_1, x_2)$ and $y = (y_1, y_2)$?
 - A) $d(x, y) \ge 0$ for all $x, y \in \mathbb{R}^2$
 - B) d(x, y) = d(y, x) for all $x, y \in \mathbb{R}^2$
 - C) d(x, y) = 0 implies x = y
 - D) $d(x, y) \le d(x, z) + d(z, y)$ for all x, y, $z \in \mathbb{R}^2$
- 69. Let d be the discrete metric on \mathbb{R} . Which of the following sequence (x_n) is convergent in this space ?

A)
$$x_n = 1 + \frac{1}{n}$$

B) $x_n = \begin{cases} 1 & \text{if } n \le 10 \\ 2 & \text{otherwise} \end{cases}$
C) $x_n = \begin{cases} 0 & \text{if } n < 10 \\ 1/n & \text{otherwise} \end{cases}$
D) $x_n = \frac{1}{n} + \frac{1}{n+1}$

70. Let ρ be the sup metric on the space C[0, 1] of continuous real valued functions

on [0, 1]. Let
$$f(x) = \begin{cases} x: 0 \le x \le 1/2 \\ 1-x: 1/2 \le x \le 1 \end{cases}$$
 and $g(x) = \begin{cases} 0: 0 \le x \le 1/2 \\ 1-2x: 1/2 \le x \le 1 \end{cases}$
Then $\rho(f, g) =$
A) 0 B) 1 C) 1/2 D) 3/2

71. Let τ be the topology on the reals \mathbb{R} for which $\{(-\infty, a) : a > 0\} \cup \{(b, \infty) : b > 0\}$ is a subbase. Which of the following is not an open set in this topology ?

- A) (0, 1) B) (-1, 0) C) (1, 2) D) $(-\infty, 1)$
- 72. Let τ_1 be the cofinite topology on \mathbb{R} and τ_2 be the usual topology on \mathbb{R} . Then which of the following is a continuous function from (\mathbb{R}, τ_1) to (\mathbb{R}, τ_2) ?

A)
$$f(x) = 1$$

B) $f(x) = x$
C) $f(x) = \begin{cases} x & \text{if } x \ge 0 \\ 0 & \text{otherwise} \end{cases}$
D) $f(x) = \begin{cases} 1+x & \text{if } x \ge 1 \\ 2 & \text{otherwise} \end{cases}$

A21

17821

- 73. Which of the following pairs of spaces are homeomorphic ? Here \mathbb{R} is the real line.
 - A) \mathbb{R} and $\mathbb{R} \times \mathbb{R}$
 - B) \mathbb{R} and the open interval (0, 1)
 - C) the closed interval [0, 1] and the unit circle $\{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 = 1\}$
 - D) the closed interval [0, 1] and the unit disk {(x, y) $\in \mathbb{R} \times \mathbb{R} : x^2 + y^2 \le 1$ }
- 74. Let $X_p = \mathbb{R}^2$ be the normed linear space with norm $\|\|_p : 1 \le p \le \infty$. Then for which value of p the point (3/4, -1/2) lies in the closed unit ball in X_p ?
 - A) 1 and 2
 - B) 2 and ∞
 - C) 1 and ∞
 - D) ∞ only
- 75. Let X be the normed linear space c_{00} with norm $\| \|_{\infty}$ and T be a linear operator on X which is continuous at the point (0, 0, ...). Then which of the following is not true ?
 - A) T is continuous on X
 - B) T is bounded
 - C) T(B) is bounded where B is the closed unit ball in X
 - D) For some convergent sequence (x_n) in X the sequence $(T(x_n))$ is not convergent
- 76. Let $X = \mathbb{R}^2$ be the normed linear space with norm $\|\|_2$. Let A be a bounded linear operator on X given by $A(x, y) = \left(\frac{1}{\sqrt{2}}(x + y), \frac{1}{\sqrt{2}}(y x)\right)$. Then $\|A\| =$
 - A) 1
 - B) 2
 - C) $\sqrt{2}$
 - D) $2\sqrt{2}$

A21

-11-

77. Let $X = \mathbb{R}^3$ be the normed linear space with norm $\| \|_2$ and $Y = \mathbb{R}^2$ be the

normed linear space with norm $\| \|_2$. If $F : X \to Y$ is defined by

 $F(x_1, x_2, x_3) = (x_1, x_3)$ then which of the following is not true?

- A) F is continuous
- B) F maps open sets onto open sets
- C) If ||x|| = 1 then ||F(x)|| = 1
- D) F has closed graph
- 78. Let X = C[-1, 1] be the space of all real valued continuous functions on [-1, 1] with inner product defined by $\langle x, y \rangle = \int_{-1}^{1} x(t)y(t) dt$. If $x(t) = \sin t$ then the set of all elements in X orthogonal to x is A) the set of all odd functions B) the set of all even functions
 - C) the set $\{\cos nt : n \in \mathbb{N}\}$ D) the set $\{sinnt : n \in \mathbb{N}\}$
- 79. Let $H = l^2$ be the real Hilbert space and $f \in H'$ be defined by

f(x) = x(1) +
$$\frac{x(2)}{2}$$
 + $\frac{x(3)}{3}$ + Then $||f|| =$
A) $\pi/\sqrt{6}$ B) $\pi/6$
C) $\pi^2/6$ D) $\pi^2/\sqrt{6}$

80. Let $H = L^2[-\pi, \pi]$ be the complex Hilbert space and $u_n(t) = e^{int}/\sqrt{2\pi}$ for each integer n and $t \in [-\pi, \pi]$. Then which of the following is not true ?

A)
$$x = \sum_{n} \langle x, u_{n} \rangle u_{n}$$
 for all $x \in H$

B)
$$\|\mathbf{x}\| = \left(\sum_{n} |\langle \mathbf{x}, \mathbf{u}_{n} \rangle|^{2}\right)^{1/2}$$
 for all $\mathbf{x} \in \mathbf{H}$

C)
$$\overline{\text{span}\{u_n\}} = H$$

D) $\left\{ u_{n}: \langle x, u_{n} \rangle \neq 0 \right\}$ is finite for each $x \in H$

-12-

A21